
Version 1 April 1999

WTN-49

A Discussion of the implementation of PCI support
on Tornado/vxWorks BSPs.

Copyright © 1984-1999 Wind River Systems Inc.

ALL RIGHTS RESERVED.

vxWorks, Wind River Systems, the Wind River Systems logo and wind are registered trademarks of Wind
River Systems Inc.  Crosswind, IxWorks, Tornado, VxSim, VxVmi, WindC++, WindConfig, Wind Foundation
Classes, WindNet, WindPower, WindSh and WindView are trademarks of Wind River Systems Inc.

All other trademarks used in this document are the property of their respective owners.

The Peripheral Component
Interconnect (PCI) Bus and vxWorks

Wind Tech Notes are maintained and published by Wind River Systems Customer Support

Telephone Email Fax
Corporate 800/872-4977 Toll

Free, US and
Canada.

support@wrs.com 510/749-2164

Europe (+) 800 49 77 49 77 support@wrsec.fr (+) 33 1 60 92 63 15
Japan 011-81-3-5467-5900 support@kk.wrs.com 011-81-5467-5877

If you purchased your Wind River systems Product from a distributor, please contact your distributor to
determine how to reach your technical support organization.

Please provide your license number when contacting Customer Support



The Peripheral Component Interconnect (PCI) Bus and vxWorks WTN-49

49-2

Overview
WRS provides support for the Peripheral Component Interconnect (PCI) bus in many of its newer Board
Support Packages (BSPs).  It is the intent of this paper to provide a general outline of WRS implementation
of PCI under vxWorks.

PCI Address Spaces and Memory Mapping
The PCI Bus provides three types of address space: I/O, Memory and Configuration.  Each device is
mapped to memory and/or I/O space through Base Address Registers located in configuration space.  This
eliminates the need for hardware jumpers to determine the addresses for the board.  The configuration of
the PCI bus is almost completely controlled by software registers in configuration space.

Therefore each PCI device must be configured before it can be used.  This means that its memory or I/O
address must be assigned and the device must be enabled to respond to normal PCI transactions.

WRS provides a standard library for accessing configuration space called pciConfigLib.c.  This module
supports Host-Bridge devices using access mechanism 1 and access mechanism 2 as defined in the PCI
Spec 2.1.  A third access mechanism that WRS refers to, as mechanism 0 is available for non-standard
bridges.  This mechanism 0 calls out to special BSP specific routines to perform configuration read and
write functions, while maintaining the same user interface of the other mechanisms.

The pciConfigLib.c module provides routines for accessing any register within configuration space.  It also
includes routines to scan a bus looking for instances of a particular device or a particular class.  There is
also a routine that can configure simple devices with a simple calling interface.

PCI Interrupt Handling
The PCI specification does not address how interrupt signals are routed to the interrupt controller device for
a motherboard bus.  Each device has 4 interrupt pins available.  They are named A, B, C, and D.  Each
single interrupt PCI device is required to always use Int Pin A to generate an interrupt.  Devices with
multiple functions can assign 1 interrupt pin per function.  If a device implements all 8 possible sub-
functions, there would be 2 interrupt sources on each interrupt pin.  A PCI interrupt handling system needs
to be able to call several interrupt service routines for each generated interrupt.  The normal operation is to
call all interrupt handlers each time.  Each handler is responsible for checking that its associated device is
actually generating an interrupt.  If it isn’t the handler returns immediately so that the next interrupt handler
can be called.

The module pciIntLib.c provides for multiple interrupt handlers to be attached to a single interrupt line.  This
is done by installing a special handler that calls all of the routines from a linked list.  The pciIntConnect() and
pciIntDisconnect() functions simply add or delete handlers from the linked list.

PCI Configuration Strategies for vxWorks.
The macro INCLUDE_PCI should be defined to indicate that the BSP includes PCI support.

The macro PCI_CFG_TYPE should be assigned to one of the following values:

1. Static configuration: PCI_CFG_FORCE

The programmer/bsp writer programs each device separately through data tables, configuration
macros, or some other method.  The addresses and interrupt numbers for each device are known
in advance and are programmed directly to the  device.



The Peripheral Component Interconnect (PCI) Bus and vxWorks WTN-49

49-3

2. Dynamic Configuration:  PCI_CFG_AUTO

This is the normal PCI dynamic configuration where the PCI bus is scanned and memory or I/O
addresses are assigned dynamically to each device found.  This is typical X86 BIOS PCI
initialization routines.  The programmer do not need to know what addresses get assigned to a
device beforehand.  It is sufficient that the correct amount of memory or I/O space is assigned.

This functionality is implemented in the WRS pciAutoConfigLib module.

3. No Configuration:  PCI_CFG_NONE

This is reserved for those situations where an agent outside of vxWorks performs configuration.  In
this case, all the PCI devices are preconfigured before vxWorks is started.   The difficulty with this
method is the vxWorks system does not have full knowledge of the range of addresses and bus
numbers that were assigned during the scan.  This is usually necessary for dynamic set up of the
MMU tables when the MMU is in use.

PCI Initialization Sequences
When vxWorks is started, the first use of any device occurs just after the call to sysHwInit2().  However, the
MMU memory map is initialized and activated between the calls to sysHwInit() and sysHwInit2().  Because
of this, the recommended initialization sequence is:

1. sysHwInit () - The default MMU table entries should correspond to the access windows of the Host
bridge that map local transactions to PCI transactions (‘master’ windows).

2. sysHwInit2 () – In sysHwInit2() the programmer either statically configures all the devices intended for
use, or invokes the dynamic configuration tool pciAutoConfig().

Device Driver Initialization
The old paradigm for vxWorks drivers has the device create function (xxxDevCreate()) being called with the
device addresses and other information passed as arguments.  In the PCI world, this can only work with
static configuration (PCI_CFG_FORCE).  In the other two configuration models, the addresses and
information are not known at compile time.  In these cases, the device configuration information must be
accessed after configuration is complete and then passed to the driver.   Any older driver can be used with
PCI devices if there is code to read configuration information from the device and then pass that information
to the driver.

If a driver were specific to PCI devices it would be much more logical to specify a device by its configuration
address, rather than memory or I/O addresses.  However, PCI configuration addresses are not absolute or
permanent.

If the programmer chose bus, device, and function numbers as the address reference, the problem would
lie in the bus numbering.  Bus numbers are assigned dynamically as the bus is scanned.  A device that
might be (2,5,0) at one point could easily be (1,5,0) at some other time depending on the insertion/removal
of a device using a PCI-PCI bridge.

If a programmer chose a reference model using the vendor/device Id and instance number there is a similar
lack of absoluteness.   For example: Consider a case where the first instance of a device has a
vendor/device Id 0x10110008.  Again, if a card is inserted/removed, a device that was the first instance of
device id 0x00011234 could now be the second instance of the same device.  There exists no way to refer
to devices on any bus, except bus 0, with a consistent and absolute address that never changes.  However,
this latter model of reference is the preferred one, since all that can change is the instance number of the



The Peripheral Component Interconnect (PCI) Bus and vxWorks WTN-49

49-4

same type of device.  In the first case, if a device changes from (2,5,0) to (3,5,0) and the system isn’t aware
of the change, the driver would attempt to control whatever device was in the old slot id of (2,5,0).

The paradigm for a PCI device driver should be to access the device through configuration space and
determine the addresses and information need to control the device.  With this information the driver is now
quite traditional in its control of the device.  It should not need to refer to configuration space during normal
device operation.  Most new PCI devices map all their configuration registers into memory space as well as
any device specific registers.  It is usually more efficient to access I/O or Memory space than configuration
space.

Dynamic MMU mapping
To follow the model set for VME window mapping, PCI master and slave accesses should follow a standard
set of macros for describing the windows between buses.  It takes 3 values to describe any window
between two busses.

PCI Master Access Windows

The first piece of information is the window address on the host side.  The second piece of information is
the window address on the remote side.  The third is the size of the window.  By convention WRS will use
macros of the form “PCI_xxxx_LOCAL” to be the host side information.  The form “PCI_xxxx_BUS” will
represent the remote bus address. Macros of the form “PCI_xxx_SIZE” will describe the size of the window
in bytes.  Setting the size macro to zero should disable the corresponding window.

There are 3 natural windows from a memory-mapped perspective into an average Host-Bridge.  One
window will map local memory access to a PCI I/O access.  One window to map local memory access to
PCI MEMIO access (non-prefetchable).  The third maps local memory accesses to PCI MEM accesses
(prefetchable).  Since there is no fully defined specification for host bridges, there certainly can be more
windows than this.  Several of the Host-bridge devices that have been seen also have a special window for
PCI-IACK signaling.

The following is a typical excerpt from config.h in a typical PCI capable BSP:

/* Master window allows CPU to access PCI I/O addresses */

#define PCI_MSTR_IO_LOCAL 0xC0000000
#define PCI_MSTR_IO_BUS 0x00000000
#define PCI_MSTR_IO_SIZE 0x00010000

/* Master window allows CPU to access PCI Memory addresses (prefetch) */

#define PCI_MSTR_MEM_LOCAL 0x80000000
#define PCI_MSTR_MEM_BUS 0x00000000
#define PCI_MSTR_MEM_SIZE 0x01000000

/* Master window allows CPU to access PCI Memory  (non-prefetch) */

#define PCI_MSTR_MEMIO_LOCAL 0x82000000
#define PCI_MSTR_MEMIO_BUS 0x00000000
#define PCI_MSTR_MEMIO_SIZE 0x01000000

/* Master window allows CPU to generate PCI_IACK cycles */

#define PCI_MSTR_IACK_LOCAL 0x8e000000
#define PCI_MSTR_IACK_BUS 0x0e000000



The Peripheral Component Interconnect (PCI) Bus and vxWorks WTN-49

49-5

#define PCI_MSTR_IACK_SIZE 0x100

There are 3 address spaces in PCI: memory, I/O, and configuration.  MEM and MEMIO are not different
address spaces they are different bus operations.  The MEMIO is a simple register read/write.  The MEM
accesses will be turned into cache type of operations where memory will be read ahead of time (pre-
fetched) and data is written with the ‘write and invalidate’ operation.  This tells the target device that more
data is coming and it should just empty its cache line since it is going to be completely rewritten by the time
this operation is done.  The PCI specification does not specify how the Host Bridge maps MEM accesses to
optimized PCI bus transactions.  This is Host-Bridge specific and the appropriate manual for Host-Bridge
device should be consulted.

In order to access a PCI memory location, the local CPU must know what local address is mapped to that
PCI location.  The CPU must use the local address, not the PCI address of the device location.  The
formula to translate a PCI address into the corresponding address on the local bus is: (These examples do
not check that the PCI address actually lies within the window boundaries)

Local Addr  =  PCI addr + (PCI_MSTR_XXX_LOCAL - PCI_MSTR_XXX_BUS)

For example:

#define PCI_MEM2LOCAL(x) \
     ((int)(x) + PCI_MSTR_MEM_LOCAL - PCI_MSTR_MEM_BUS)

#define PCI_MEMIO2LOCAL(x) \
     ((int)(x) + PCI_MSTR_MEMIO_LOCAL - PCI_MSTR_MEMIO_BUS)

#define PCI_IO2LOCAL(x) \
     ((int)(x) + PCI_MSTR_IO_LOCAL - PCI_MSTR_IO_BUS)

PCI Slave Windows

Each of the windows described above is a master window.  The host CPU is the bus master for all
transactions using that window.  A slave window is one where the host board acts as the target device to a
transaction initiated by some other device on the bus.  The number and types of slave windows varies, but
almost all will have at least one slave window that makes the local memory accessible to other PCI devices
such as DMA bus masters or other CPUs.

/*
 * Slave window that makes local memory visible to PCI
 * devices
 */

PCI_SLV_MEM_LOCAL /* Local address of window */
PCI_SLV_MEM_BUS /* PCI Bus address of window */
PCI_SLV_MEM_SIZE /* window size,0 means disabled */

/*
 * For X86 it is possible to have a slave window mapping
 * PCI IO to Local IO
 */



The Peripheral Component Interconnect (PCI) Bus and vxWorks WTN-49

49-6

PCI_SLV_IO_LOCAL /* Local address of window */
PCI_SLV_IO_BUS /* PCI Bus address of window */
PCI_SLV_IO_SIZE /* window size,0 means disabled */

It is possible to have slave windows that would map PCI I/O transactions to local memory or, in the
case of the x86, to local bus I/O requests.

In order to pass a memory address to a remote device, the local address must be translated to its
equivalent PCI address for the remote device to use.  The formula for translating a local address to its
PCI equivalent is: (This example does not check that the address lies within the window or not)

PCI addr = Local Addr + (PCI_SLV_XXX_BUS - PCI_SLV_XXX_LOCAL)

For example:

#define LOCAL2PCI_MEM(x) \
     ((x) + PCI_SLV_MEM_BUS - PCI_SLV_MEM_LOCAL)


